Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

نویسندگان

  • Daisuke Nagai
  • Takafumi Akamatsu
  • Toshio Itoh
  • Noriya Izu
  • Woosuck Shin
چکیده

A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Q(catalyst) required for 1 mV of ∆V(gas) was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Q(catalyst) for 200 and 1,000 ppm H₂ was 3.69 μW and 11.7 μW, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF WALL THERMAL CONDUCTIVITY ON MICRO-SCALE COMBUSTION CHARACTERISTICS OF HYDROGEN-AIR MIXTURES WITH DETAILED CHEMICAL KINETIC MECHANISMS IN Pt/γ-Al2O3 CATALYTIC MICRO-COMBUSTORS

To understand the effect of different thermal conductivities on catalytic combustion characteristics, effect of thermal conductivity on micro-combustion characteristics of hydrogen-air mixtures in Pt/γ-Al2O3 catalytic micro-combustors were investigated numerically with detailed chemical kinetics mechanisms. Three kinds of wall materials (100, 7.5, and 0.5 W/m·K) were selected to investigate the...

متن کامل

Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen ...

متن کامل

CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber

This paper reports a CFD modeling study to investigate the hydrogen-air mixture combustion in a micro scale chamber. Nine species with nineteen reversible reactions were considered in the premixed combustion model. The effect of operational and geometrical conditions including; combustor size, wall conductivity, reactant flow rates and hydrogen feed splitting on combustion stabilit...

متن کامل

Combustion characteristics of hydrogen–air premixed gas in a sub-millimeter scale catalytic combustor

A sub-millimeter scale catalytic combustor was fabricated. Platinum catalyst coated on a porous ceramics support was placed in the combustion chamber. The chamber, sized 10 10 1:5 mm was covered with a GaAs window which is transparent to infrared radiation. The conversion rate was measured using gas chromatography. The temperature distribution in the combustion chamber was measured with an infr...

متن کامل

CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014